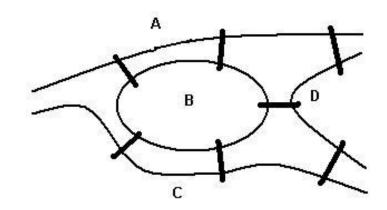
GRAPH THEORY

RASEENA P Assistant Professor Dept. of Mathematics MES Keveeyam College, Valanchery

In the beginning...



□ 1736: Leonhard Euler

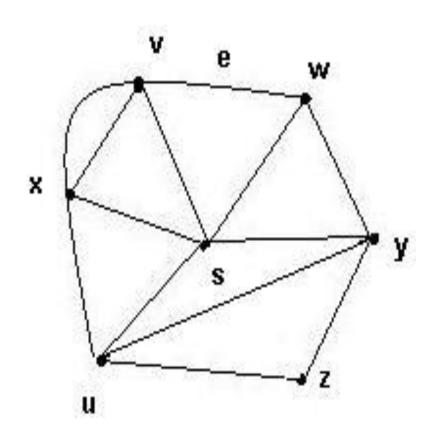
- Basel, 1707-St. Petersburg, 1786
- □ He wrote A solution to a problem concerning the geometry of a place. First paper in graph theory.

Problem of the Königsberg bridges:

Starting and ending at the same point, is it possible to cross all seven bridges just once and return to the starting point?

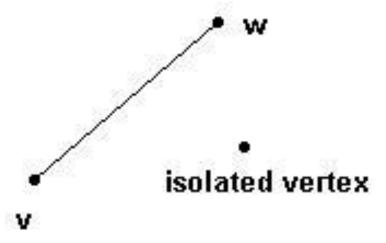
Introduction

- What is a graph G?
- It is a pair G = (V, E), where
 - V = V(G) = set of vertices
 - \blacksquare E = E(G) = set of edges
- Example:
 - $V = \{s, u, v, w, x, y, z\}$
 - $E = \{(x,s), (x,v)_1, (x,v)_2, (x,u), (v,w), (s,v), (s,u), (s,w), (s,y), (w,y), (u,y), (u,z), (y,z)\}$



Edges

- An edge may be labeled by a pair of vertices, for instance e = (v,w).
- □ e is said to be *incident* on v and w.
- Isolated vertex = a vertex without incident edges.



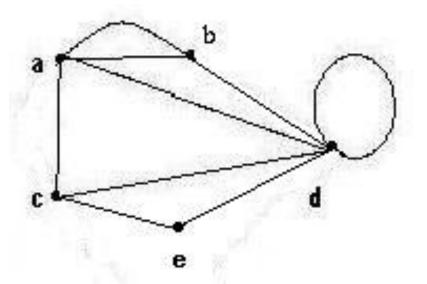
Special edges

Parallel edges

- Two or more edges joining a pair of vertices
 - in the example, a and b are joined by two parallel edges

Loops

- An edge that starts and ends at the same vertex
 - In the example, vertex d has a loop



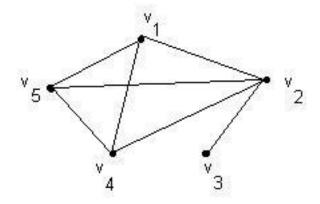
Special graphs

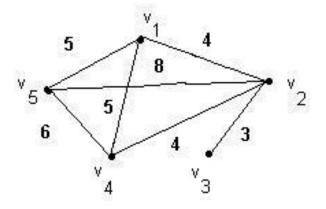
Simple graph

 A graph without loops or parallel edges.

Weighted graph

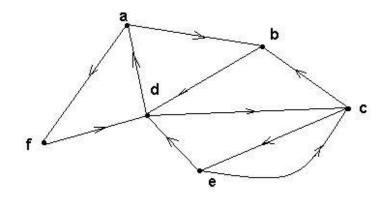
A graph where each edge is assigned a numerical label or "weight".





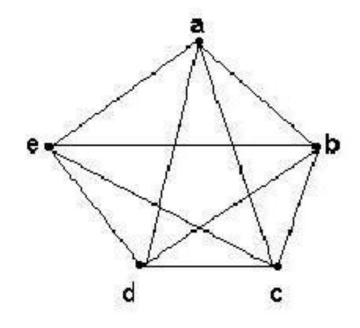
Directed graphs (digraphs)

G is a directed graph or digraph if each edge has been associated with an ordered pair of vertices, i.e. each edge has a direction



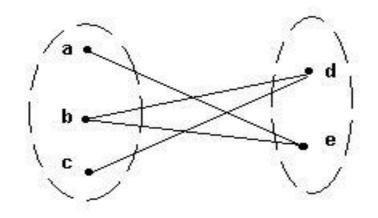
Complete graph K_n

- Let n ≥ 3
- The complete graph K_n is the graph with n vertices and every pair of vertices is joined by an edge.
- □ The figure represents K₅

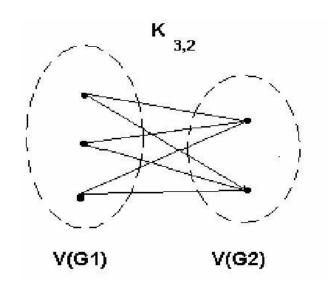


Bipartite graphs

- A bipartite graph G is a graph such that
 - $V(G) = V(G_1) \cup V(G_2)$
 - $|V(G_1)| = m, |V(G_2)| = n$
 - $V(G_1) \cap V(G_2) = \emptyset$
 - No edges exist between any two vertices in the same subset V(G_k), k = 1,2



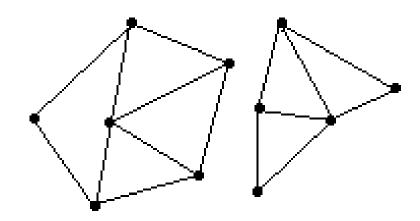
Complete bipartite graph K_{m,n}



- □ A bipartite graph is the complete bipartite graph K_{m,n} if every vertex in V(G₁) is joined to a vertex in V(G₂) and conversely,
- $\square |V(G_1)| = m$
- $|V(G_2)| = n$

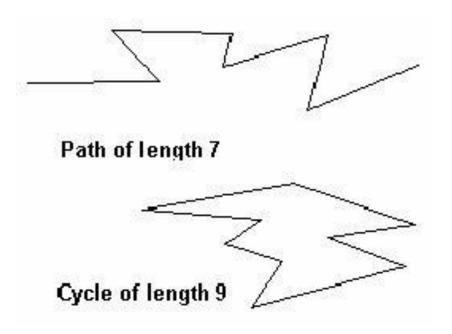
Connected graphs

- A graph is connected if every pair of vertices can be connected by a path
- Each connected subgraph of a nonconnected graph G is called a component of G



2 connected components

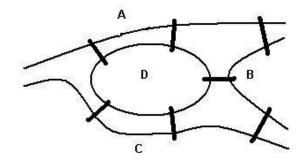
Paths and cycles

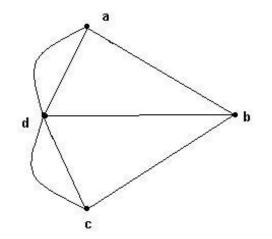


- A path of length n is a sequence of n + 1 vertices and n consecutive edges
- A cycle is a path that begins and ends at the same vertex

Euler cycles

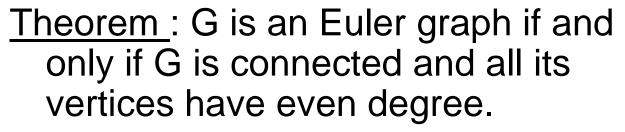
- An Euler cycle in a graph G is a simple cycle that passes through every edge of G only once.
- □ The Königsberg bridge problem:
 - Starting and ending at the same point, is it possible to cross all seven bridges just once and return to the starting point?
- This problem can be represented by a graph
- Edges represent bridges and each vertex represents a region.



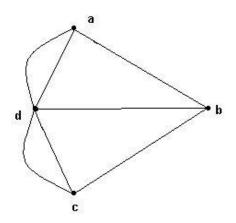


Euler graphs

□ A graph G is an *Euler graph* if it has an Euler cycle.



- The connected graph represents the Konigsberg bridge problem.
- It is not an Euler graph.
- □ Therefore, the Konigsberg bridge problem has *no solution*.



Degree of a vertex

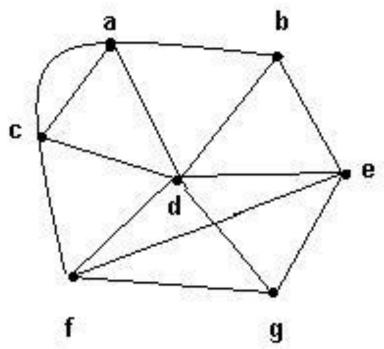
- The degree of a vertex v, denoted by δ(v), is the number of edges incident on v
- Example:

•
$$\delta(a) = 4$$
, $\delta(b) = 3$,

•
$$\delta(c) = 4$$
, $\delta(d) = 6$,

•
$$\delta(e) = 4$$
, $\delta(f) = 4$,

•
$$\delta(g) = 3$$
.



Sum of the degrees of a graph

<u>Theorem</u>: If G is a graph with m edges and n vertices $v_1, v_2, ..., v_n$, then

$$\sum_{i=1}^{n} \delta(v_i) = 2m$$

In particular, the sum of the degrees of all the vertices of a graph is even.

Representations of graphs

Adjacency matrix

Rows and columns are labeled with ordered vertices

write a 1 if there is an edge between the row vertex and the column vertex

and 0 if no edge exists between them

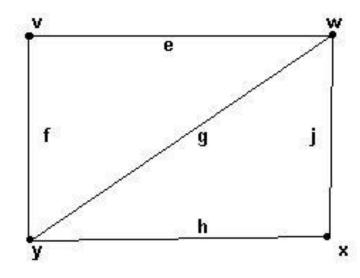
	e	
f	g	j
/	h	

	V	W	X	у
V	0	1	0	1
W	1	0	1	1
X	0	1	0	1
у	1	1	1	0

Incidence matrix

Incidence matrix

- Label rows with vertices
- Label columns with edges
- 1 if an edge is incident to a vertex, 0 otherwise

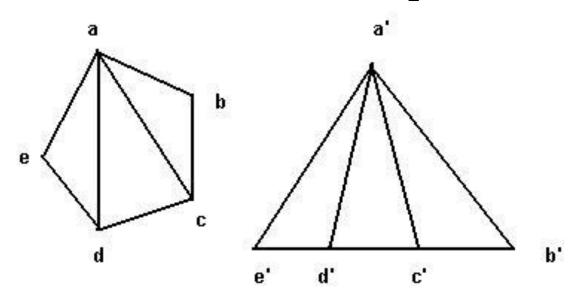


	е	f	g	h	j
V	1	1	0	0	0
W	1	0	1	0	1
X	0	0	0	1	1
у	0	1	1	1	0

Isomorphic graphs

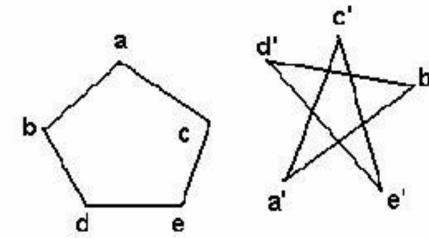
G₁ and G₂ are *isomorphic*

- □ if there exist one-to-one onto functions f: $V(G_1) \rightarrow V(G_2)$ and g: $E(G_1) \rightarrow E(G_2)$ such that
- □ an edge e is adjacent to vertices v, w in G₁ if and only if g(e) is adjacent to f(v) and f(w) in G₂



Isomorphism and adjacency matrices

 Two graphs are isomorphic if and only if after reordering the vertices their adjacency matrices are the same



	а	b	С	d	е
а	0	~	1	0	0
b	1	0	0	1	0
С	1	0	0	0	1
d	0	1	0	0	1
е	0	0	1	1	0